IEEE Access Special Section Editorial Smart Grids: a Hub of Interdisciplinary Research
نویسندگان
چکیده
The smart grid is an important hub of interdisciplinary research where researchers from different areas of science and technology combine their efforts to enhance the traditional electrical power grid. Due to these efforts, the traditional electrical grid is now evolving. The envisioned smart grid will bring social, environmental, ethical, legal and economic benefits. Smart grid systems increasingly involve machine-to-machine communication as well as human-to-human, or simple information retrieval. Thus, the dimensionality of the system is massive. The smart grid is the combination of different technologies, including control system theory, communication networks, pervasive computing, embedded sensing devices, electric vehicles, smart cities, renewable energy sources, Internet of Things, wireless sensor networks, cyber physical systems, and green communication. Due to these diverse activities and significant attention from researchers, education activities in the smart grid area are also growing. The smart grid is designed to replace the traditional electrical power grid. The envisioned smart grid typically consists of three networks: Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). HANs connect the devices within the premises of the consumer and connect smart meters, Plug-in Electric Vehicles (PEVs), and distributed renewable energy sources. NANs connect multiple HANs and communicate the collected information to a network gateway. WANs serve as the communication backbone. Communication technologies play a vital role in the successful operation of smart grid. These communication technologies can be adopted based upon the specific features required by HANs, NANs, and WANs. Both wired and the wireless communication technologies can be used in the smart grid [1]. However, wireless communication technologies are suitable for many smart grid applications due to the continuous development in the wireless research domain. One drawback of wireless communication technologies is the limited availability of radio spectrum. The use of cognitive radio in smart grid communication will be helpful to break the spectrum gridlock through advanced radio design and operating in multiple settings, such as underlay, overlay, and interweave [2]. The smart grid is the combination of diverse sets of facilities and technologies. Thus, the monitoring and control of transmission lines, distribution facilities, energy generation plants, and as well as video monitoring of consumer premises can be conducted through the use of wireless sensor networks [3]–[6]. In remote sites and places where human intervention is not possible, wireless sensor and actuator networks can be useful for the successful smart grid operation [7], [8]. Since wireless sensor networks operate on the Industrial, Scientific, and Medical (ISM) band, the spectrum might get congested due to overlaid deployment of wireless sensor networks in the same premises. Thus, to deal with this spectrum congestion challenge, cognitive radio sensor networks can be used in smart grid environments [9], [10]. The objective of this Special Section in IEEE ACCESS is to showcase the most recent advances in the interdisciplinary research areas encompassing the smart grid. This Special Section brings together researchers from diverse fields and specializations, such as communications engineering, computer science, electrical and electronics engineering, educators, mathematicians and specialists in areas related to smart grids. In this Special Section, we invited researchers from academia, industry, and government to discuss challenging ideas, novel research contributions, demonstration results, and standardization efforts on the smart grid and related areas. This Special Section is a collection of eleven articles. These articles are grouped into the following four areas: (a) Reliability, security, and privacy for smart grid, (b), Demand response management, understanding customer behavior, and social networking applications for smart grid, (c) Smart cities, renewable energy, and green smart grid, and (d) Communication technologies, control and management for the smart grid.
منابع مشابه
Editorial for IEEE Access Special Section on Theoretical Foundations for Big Data Applications: Challenges and Opportunities
Energy is one of the most important parts in human life. As a significant application of energy, smart grid is a complicated interconnected power grid that involves sensors, deployment strategies, smart meters, and real-time data processing. It continuously generates data with large volume, high velocity, and diverse variety. In this paper, we first give a brief introduction on big data, smart ...
متن کاملGuest Editorial Special Issue on Power Quality in Smart Grids
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please...
متن کاملIEEE Access Special Section Editorial: Body Area Networks For Interdisciplinary Research
Recent advancements in integrated circuits, wireless communication, and MicroElectroMechanical Systems (MEMS) technology has enabled low power, nano-technology wireless sensor nodes strategically deployed on the human body to be used by different applications, such as health monitoring, assisted living, and telemedicine. This new area of research is known as Body Area Networks (BANs) [1], [2]. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Access
دوره 3 شماره
صفحات -
تاریخ انتشار 2015